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Abstract
We study the weak and strong convergence of the Ishikawa iterative sequence to a fixed point of a Lipschitz
pseudocontrative mapping , T, in a Hilbert space. We do not require any compactness type assumptions
either on T or its domain, for the strong convergence results. Neither do we require that the interior of
the fixed points set of T be nonempty, which is a condition used in [25]. Furthermore, we do not need to
compute for closed convex subsets, Cn, of the Hilbert space.
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Introduction
Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping T : C → C is called:
(i) Lipschitzian if there exists L > 0 such that

||Tx− Ty|| ≤ L||x− y||,

for all x, y ∈ C. If L < 1, then T is called a contraction. If L = 1, then T is called nonexpansive.
(ii) Pseudocontractive if

||x− y|| ≤ ||(1 + s)(x− y)− s(Tx− Ty)||
for all x, y ∈ C and s > 0, or equivalently

〈Tx− Ty, x− y〉 ≤ ||x− y||2 (1.1)

for all x, y ∈ C
Let A : D(A) ⊆ E → E be a map. Then A is called accretive if

||x− y|| ≤ ||x− y + s(Ax−Ay)||. (1.2)

for all x, y ∈ D(A) and s > 0. We immediately observe from (1.1) and (1.2) that A is accretive if and only
if T := I − A is pseudocontractive, where I denotes the identity operator. Thus, the zeros of accretive
operators corresponds to the fixed points of pseudocontrative maps.

Preliminaries
The notion of accretive operators was independently in 1967 by Browder [2] and Kato [1]. An early
fundamental result due to Browder, states that the initial value problem

du

dt
+Au = 0, u(0) = u0

is solvable if A is locally Lipschitzian and accretive on E. Therefore, the importance of research into the
fixed point theory of pseudocontractive maps cannot be over-emphasized (given its firm connection with
accretive maps). Many authors (see e.g [3], [5], [10], [11], [14], [17]) have contributed considerably to this
end.
It is well known that if T : E → E is a contraction map, then the Picard’s iterative sequence, starting
from an arbitrary x0 ∈ E, given by

xn+1 = Txn (1.3)

for all n ≥ 0, converges to the unique fixed point of T. If however, T is a nonexpansive map, then (1.3)
is not guaranteed to converge to a fixed point of T, even on a compact subset of E. Observe that if C is
the unit disc in <2 (which is compact) and T is its rotation about the origin, then T is easily shown to
be nonexpansive and has 0 as its unique fixed point. Starting from an x0 on the circumference, (1.3) does
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not converge to the fixed point of T.
Krasnoselskii [18] showed that instead of (1.3), if we consider the averaging sequence

xn+1 =
1

2
(xn + Txn)

for all n ≥ 0, then starting from an arbitrary x0 on the unit disc, we achieve convergence to the fixed
point of T. A further generalization due to Schaefer [19] for the fixed points of nonexpansive mappings is

xn+1 = (1− λ)xn + λTxn

for all n ≥ 0, λ ∈ (0, 1).
The most general iteration sequence for nonexpansive mappings which has been studied by many authors
is due to W.R. Mann [16] and is given by

xn+1 = (1− αn)xn + αnTxn (1.4)

for all n ≥ 0, α ∈ (0, 1), satisfying certain conditions. This iteration sequence, however, does not gener-
ally converge to a fixed point of T (when it exists), without additional conditions imposed either on T,
the domain of T or the range of T. Without any of these conditions, the best we can get is that {xn}
is an approximate fixed point sequence, i.e lim ||xn − Txn|| = 0. To get weak convergence, we need the
additional condition that T be demiclosed at zero, together with the fact that E be an Opial space, while
to get strong convergence, we need some compactness type assumptions on T, domain of T or range of T.
The natural question that arises is the following:Can The Mann iterative sequence converge to
the fixed points of the more general class of pseudocontractive maps? To this end, we quickly
submit that all attempts to use the Mann iteration sequence for Lipschitz pseudocontractive maps have
proven abortive. In [20], Chidume and Mutangadura gave an example of a Lipschitz pseudocontractive
self map of a compact convex subset of a Hilbert space with a unique fixed point, for which the Mann
iterative sequence fails to converge.
The next natural question is the following: What iterative sequence can we employ for the con-
vergence to fixed points of Lipschitz pseudocontractive maps? In [17], Ishikawa introduced an
iteration sequence, which in some sense is more general than the Mann iterative sequence, which he used
for the convergence to fixed points of Lipschitz pseudocontractive maps. More precisely, he proved the
following:
Theorem 1 [17] If C is a compact convex subset of a Hilbert space H and T : C → C is a Lipschitz
pseudocontractive mapping and x0 is any point of C, then the sequence {xn}n≥0 converges strongly to a
fixed point of T, where {xn} is defined iteratively for each integer n ≥ 0 by

xn+1 = (1− αn)xn + αnTyn; yn = (1− βn)xn + βnTxn,

where {αn} and {βn} are sequences of positive numbers satisfying the conditions

(i)0 ≤ αn ≤ βn < 1; (ii) limβn = 0; (iii)
∑

αnβn =∞.

The Ishikawa iterative sequence actually leads to an approximate fixed point sequence for Lipschitz pseu-
docontractive maps, such that the imposition of compactness type assumptions on T or domain of T or
range of T, yields convergence to fixed points of T.
In order to obtain strong convergence to fixed points of pseudocontractive maps without the compactness
type assumptions, many authors (see e.g [21], [22]) have defined what they call hybrid Mann and Ishikawa
algorithms. However, these hybrid schemes are hinged on some special subsets, Cn and Qn of the Banach
space, whose computations are non-trivial.
More recently, Zegeye et al [25] proved the following results:
Theorem 2 [25]: Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
Ti : C → C, i = 1, 2, ..., N be a finite family of Lipschitz pseudocontractive mappings with Lipschitzian

constants Li, for i = 1, 2, ..., N respectively. Assume that the interior of F :=
⋂N
i=1 F (Ti) is nonempty.

Let {xn} be a sequence generated from an arbitrary x0 ∈ C by

xn+1 = (1− αn)xn + αnTyn; yn = (1− βn)xn + βnTxn,

where Tn := Tn(mod)N and {αn}, {βn} ∈ (0, 1) satisfying the following conditions. (i)αn ≤ βn ∀n ≥
0; (ii) lim inf αn = α > 0; (iii)supn≥0βn ≤ β < 1√

1+L2+1
for L := max{Li : i = 1, 2, ..., N}. Then {xn}

converges strongly to a common fixed point of {T1, T2, ..., TN}.
Although the results of Zegeye et al is plausible, pseudocontraction maps abound whose fixed point sets
are finite and as such have empty interiors.
So, the question that still remains to be answered is:
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Is it possible to obtain strong convergence of the Ishikawa iteration sequence (not hybrid) to
fixed points of Lipschitz pseudocontraction maps, without the compactness type assumptions
on either T or its domain and without the assumption that the interior of the fixed points
set be nonempty?
We now state some results in the Literature which will help us answer the above question to a reasonable
extent. The first one and its proof is given by Zhou in [21], as Tool 2.
Tool 2 Zhou [21](Demiclosedness): Let C be a closed convex subset of a real Hilbert space H and
T : C → C be a demicontinuous pseudocontractive self mapping from C into itself. Then F (T ) is a closed
convex subset of C and I − T is demiclosed at zero.
Lemma 1 [26]: Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying the
inequality an+1 ≤ (1 + δn)an + bn, n ≥ 1. If

∑
δn <∞ and

∑
bn <∞, then lim an exists. If in addition

{an} has a subsequence which converges strongly to zero, then lim an = 0.
Theorem 3 (Maruster [23]): Let T : C → C be a nonlinear mapping with F (T ) 6= ∅, where C is a
closed convex subset of a real Hilbert space H. Suppose the following conditions are satisfied:
(i) I − T is demiclosed at 0
(ii) T is demicontractive with constant k, or equivalently T satisfies condition A with λ = 1−k

2
(iii) 0 < a ≤ αn ≤ b < 2λ = 1− k
Then the Mann iteration sequence converges weakly to a fixed point of F (T ), for any starting x0.
Theorem 4 (Maruster [23]): Suppose T satisfies the conditions of theorem 3. If in addition there
exists 0 6= h ∈ H such that

〈x− Tx, h〉 ≤ 0 (1.5)

for all x ∈ D(T ), then starting from a suitable x0, the Mann iteration sequence (1.4) converges strongly
to an element of F (T ).
In [24], Maruster and Maruster noted that if T satisfies the positivity type condition 〈Tx, x〉 ≥ ||x||2, then
it is sufficient to find a non-zero solution of the variational inequality (1.5). This motivates our choice of
monotonicity type condition.
It is our purpose in this article to prove weak and strong convergence of the Ishikawa iterative sequence
to a fixed point of a Lipschitz pseudocontractive map in a nonempty closed convex subset of a Hilbert
space. We do not need any compactness type assumption on T or its domain. Neither do we require that
the interior of the fixed points set of T be nonempty.
Before we state and prove our main results, we give a definition which will be useful in the sequel.
Definition 1: Let H be a real Hilbert space with inner product 〈., .〉 and norm ||.|| and let C be
a nonempty closed convex subset of H. The orthogonal projection PCx of x onto C is defined by
PCx = arg miny∈C ||x− y||, and has the following properties:
(i) 〈x− PCx, z − PCx〉 ≤ 0, for all z ∈ C
(ii) ||PCx− PCy||2 ≤ 〈PCx− PCy, x− y〉, for all x, y ∈ H

Main Results
Theorem 5: If C is a closed convex subset of a real Hilbert space H and T : C → C is a Lipschitz
pseudocontractive mapping and x0 is any point of C, then the sequence {xn}n≥0 converges weakly to a
fixed point of T, where {xn} is defined iteratively for each integer n ≥ 0 by

xn+1 = (1− αn)xn + αnTyn; yn = (1− βn)xn + βnTxn,

where {αn}, {βn} ∈ (0, 1) satisfy the following conditions. (i) αn ≤ βn ∀n ≥ 0;
(ii) inf αn = α > 0; (iii)supn≥0 βn ≤ β < 1√

1+L2+1
.

Proof
As in the proof of our theorem 1 in [17], we have

||xn+1 − p||2 ≤ ||xn − p||2 − αnβn(1− 2βn − L2β2
n)||xn − Txn|| (1.6)

This, together with the conditions imposed on {αn} and {βn} yields lim||xn − Txn|| = 0.
From (1.6) and lemma 1, we have that lim{||xn−p||} exists. It follows that {||xn−p||} is bounded. There-
fore {xn} is norm bounded. Thus, there exists a subsequence {xnk

} of {xn} which converges weakyly
to x∗ ∈ C. These, together with Tool 2 implies x∗ ∈ F (T ). Since H is an Opial space, a well known
standard argument yields that {xn} converges weakly to x∗.

Theorem 6: If C is a closed convex subset of a Hilbert space H and T : C → C is a Lipschitz
pseudocontractive mapping and x0 is any point of C, then the sequence {xn}n≥0 converges weakly to a
fixed point of T, where {xn} is defined iteratively for each integer n ≥ 0 by

xn+1 = (1− αn)xn + αnTyn; yn = (1− βn)xn + βnTxn,
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where {αn}, {βn} ∈ (0, 1) satisfy the following conditions. (i)αn ≤ βn ∀n ≥ 0;
(ii)

∑
αnβn =∞(iii)supn≥0βn ≤ β < 1√

1+L2+1
.

Proof
As in the proof of our theorem 1 in [17], we have

||xn+1 − p||2 ≤ ||xn − p||2 − αnβn(1− 2βn − L2β2
n)||xn − Txn|| (1.7).

This, together with the conditions imposed on {αn} and {βn} yield liminf ||xn − Txn|| = 0. Thus, there
exists a subsequence {xnk

} of {xn} such that lim||xnk
− Txnk

|| = 0.
From (1.7) and lemma 1, we have that lim{||xn − p||} exists. It follows that {||xn − p||} is bounded.
Therefore, {xn} is norm bounded. Since {xn} is norm bounded, so is {xnk

} and as such, there exists a
subsequence {xnkj

} of {xnk
} which converges weakyly to x∗ ∈ C. These, together with Tool 2 implies

x∗ ∈ F (T ). Since H is an Opial space, a well known standard argument yields that {xn} converges weakly
to x∗.

Theorem 7: Let C be a nonempty closed convex subset of a real Hilbert space, H. Let T : C → C be
a Lipschitz pseudocontractive with F (T ) = {x ∈ C : Tx = x} 6= ∅. Suppose T satisfies the conditions of
either theorem 5 or 6 and the monotonicity condition 〈Tx − x, p〉 ≥ 0,∀x ∈ C, p ∈ F (T ). Then starting
from a suitable x0 ∈ C, the Ishikawa iteration sequence converges strongly to an element of F (T ).
Proof Let p ∈ F (T ). Choose x0 ∈ C, such that 〈x0, p〉 ≥ 〈p, p〉. Then, there exists ε0 > 0 such that
〈x0 − p, p〉 ≥ ε0||x0 − p||2. Assume 〈xn − p, p〉 ≥ ε0||xn − p||2. Then using the monotonicity condition in
our theorem and (1.7), we have

〈xn+1 − p, p〉 = 〈[(1− αn)xn + αnTyn]− p, p〉
= 〈(1− αn)[xn − p] + αn[Tyn − p], p〉
= (1− αn)〈xn − p, p〉+ αn〈Tyn − p, p〉
= (1− αn)〈xn − p, p〉+ αn[〈yn − p, p〉+ 〈Tyn − yn, p〉]
= (1− αn)〈xn − p, p〉+ αn〈(1− βn)[xn − p] + βn[Txn − p], p〉

+αn〈Tyn − yn, p〉
= (1− αn)〈xn − p, p〉+ αn(1− βn)〈xn − p, p〉

+αnβn〈Txn − p, p〉+ αn〈Tyn − yn, p〉
= (1− αn)〈xn − p, p〉+ +αn(1− βn)〈xn − p, p〉

+αnβn[〈xn − p, p〉+ 〈Txn − xn, p〉] + αn〈Tyn − yn, p〉
= 〈xn − p, p〉+ αnβn〈Txn − xn, p〉] + αn〈Tyn − yn, p〉
≥ 〈xn − p, p〉
≥ ε0||xn − p||2

≥ ε0||xn+1 − p||2

So that, since xn ⇀ p from theorems 5 and 6 then xn → p.

Example 1: Let H = R (reals) and C = [1, 2] be a nonempty closed convex subset of H. Define T : C → C
by

Tx =

 1, if 1 ≤ x ≤ 3
2

3
2 , if 3

2 < x ≤ 2

Then T is a pseudocontractive mapping with a non-empty fixed points set and satisfies 〈x−Tx, p〉 ≥ 0,for
all x ∈ [1, 2]. To see this, observe that F (T ) = {1} and 〈x− Tx, p〉 ≥ 0, for all x ∈ [1, 2]. Furthermore,
(i) For 1 ≤ x ≤ 3

2 , we have

||Tx− p||2 = |1− 1|2 = 0

≤ |x− 1|2 + |x− Tx|2

= ||x− p||2 + ||x− Tx||2
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(ii) For 3
2 < x ≤ 2, we have

||Tx− p||2 = |3
2
− 1|2 =

1

4

<
1

4
+ |x− Tx|2

≤ |x− 1|2 + |x− Tx|2

= ||x− p||2 + ||x− Tx||2

From these two cases, we see that T is a pseudocontractive mapping with a non-empty fixed points set.

Example 2: Let H = R (reals) and C = [1, 2] be a nonempty closed convex subset of H. Define T : C → C
by Tx = 1. Then F (T ) = {1} and it is easily verifiable that T satisfies all the conditions of theorem 7.
Therefore, the class of maps for which our results hold is non-void.

Remark 1: In [24], Maruster and Maruster discussed several ways of choosing x0. One other way of
choosing x0 is the following: For any β > 1, choose x0 = PC(βp), where p ∈ F (T ) and P : H → C is the
metric projection from H into C. This follows since it is well known (see Definition 1) that P is firmly
nonexpansive (i.e satisfies condition (ii) of Definition 1), so that

||x0 − p||2 = ||PC(βp)− P(p)||2

≤ 〈PC(βp)− PC(p), βp− p〉
= 〈x0 − p, (β − 1)p〉
= (β − 1)〈x0 − p, p〉

This implies 〈x0 − p, p〉 ≥ ε0||x0 − p||2, where ε0 = 1
β−1

Remark 2: Maps such as the one in our example 2 above have singleton or finite fixed points set and as
such do not have non-empty interiors. Hence, the convergence results in [25] do not work for such maps.
Therefore, our results among other things, complement the results in [25].
Remark 3 : In [24], Maruster and Maruster noted that if T satisfies the positivity type condition
〈Tx, x〉 ≥ ||x||2, then it is sufficient to find a non-zero solution of the variational inequality (1.5). This
motivates our choice of monotonicity type condition in theorem 7, which helps in proving strong conver-
gence results for pseudocontractive maps.
Remark 4: Observe that prior to the work embodied herein, the methods employed in [24] have never
been used for the class of pseudocontractive maps.
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